EconPapers    
Economics at your fingertips  
 

Reactive halogens increase the global methane lifetime and radiative forcing in the 21st century

Qinyi Li (), Rafael P. Fernandez, Ryan Hossaini, Fernando Iglesias-Suarez, Carlos A. Cuevas, Eric C. Apel, Douglas E. Kinnison, Jean-François Lamarque and Alfonso Saiz-Lopez ()
Additional contact information
Qinyi Li: Institute of Physical Chemistry Rocasolano, CSIC
Rafael P. Fernandez: National Research Council (CONICET), FCEN-UNCuyo
Ryan Hossaini: Lancaster University
Fernando Iglesias-Suarez: Institute of Physical Chemistry Rocasolano, CSIC
Carlos A. Cuevas: Institute of Physical Chemistry Rocasolano, CSIC
Eric C. Apel: National Center for Atmospheric Research
Douglas E. Kinnison: National Center for Atmospheric Research
Jean-François Lamarque: National Center for Atmospheric Research
Alfonso Saiz-Lopez: Institute of Physical Chemistry Rocasolano, CSIC

Nature Communications, 2022, vol. 13, issue 1, 1-11

Abstract: Abstract CH4 is the most abundant reactive greenhouse gas and a complete understanding of its atmospheric fate is needed to formulate mitigation policies. Current chemistry-climate models tend to underestimate the lifetime of CH4, suggesting uncertainties in its sources and sinks. Reactive halogens substantially perturb the budget of tropospheric OH, the main CH4 loss. However, such an effect of atmospheric halogens is not considered in existing climate projections of CH4 burden and radiative forcing. Here, we demonstrate that reactive halogen chemistry increases the global CH4 lifetime by 6–9% during the 21st century. This effect arises from significant halogen-mediated decrease, mainly by iodine and bromine, in OH-driven CH4 loss that surpasses the direct Cl-induced CH4 sink. This increase in CH4 lifetime helps to reduce the gap between models and observations and results in a greater burden and radiative forcing during this century. The increase in CH4 burden due to halogens (up to 700 Tg or 8% by 2100) is equivalent to the observed atmospheric CH4 growth during the last three to four decades. Notably, the halogen-driven enhancement in CH4 radiative forcing is 0.05 W/m2 at present and is projected to increase in the future (0.06 W/m2 by 2100); such enhancement equals ~10% of present-day CH4 radiative forcing and one-third of N2O radiative forcing, the third-largest well-mixed greenhouse gas. Both direct (Cl-driven) and indirect (via OH) impacts of halogens should be included in future CH4 projections.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-30456-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30456-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-30456-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30456-8