EconPapers    
Economics at your fingertips  
 

History-dependent domain and skyrmion formation in 2D van der Waals magnet Fe3GeTe2

M. T. Birch (), L. Powalla (), S. Wintz, O. Hovorka, K. Litzius, J. C. Loudon, L. A. Turnbull, V. Nehruji, K. Son, C. Bubeck, T. G. Rauch, M. Weigand, E. Goering, M. Burghard and G. Schütz
Additional contact information
M. T. Birch: Max Planck Institute for Intelligent Systems
L. Powalla: Max Planck Institute for Solid State Research
S. Wintz: Max Planck Institute for Intelligent Systems
O. Hovorka: University of Southampton
K. Litzius: Max Planck Institute for Intelligent Systems
J. C. Loudon: University of Cambridge
L. A. Turnbull: Durham University
V. Nehruji: University of Southampton
K. Son: Max Planck Institute for Intelligent Systems
C. Bubeck: Max Planck Institute for Intelligent Systems
T. G. Rauch: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut Nanospektroskopie
M. Weigand: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut Nanospektroskopie
E. Goering: Max Planck Institute for Intelligent Systems
M. Burghard: Max Planck Institute for Solid State Research
G. Schütz: Max Planck Institute for Intelligent Systems

Nature Communications, 2022, vol. 13, issue 1, 1-11

Abstract: Abstract The discovery of two-dimensional magnets has initiated a new field of research, exploring both fundamental low-dimensional magnetism, and prospective spintronic applications. Recently, observations of magnetic skyrmions in the 2D ferromagnet Fe3GeTe2 (FGT) have been reported, introducing further application possibilities. However, controlling the exhibited magnetic state requires systematic knowledge of the history-dependence of the spin textures, which remains largely unexplored in 2D magnets. In this work, we utilise real-space imaging, and complementary simulations, to determine and explain the thickness-dependent magnetic phase diagrams of an exfoliated FGT flake, revealing a complex, history-dependent emergence of the uniformly magnetised, stripe domain and skyrmion states. The results show that the interplay of the dominant dipolar interaction and strongly temperature dependent out-of-plane anisotropy energy terms enables the selective stabilisation of all three states at zero field, and at a single temperature, while the Dzyaloshinksii-Moriya interaction must be present to realise the observed Néel-type domain walls. The findings open perspectives for 2D devices incorporating topological spin textures.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-30740-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30740-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-30740-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30740-7