EconPapers    
Economics at your fingertips  
 

Berry curvature-induced local spin polarisation in gated graphene/WTe2 heterostructures

Lukas Powalla, Jonas Kiemle, Elio J. König, Andreas P. Schnyder, Johannes Knolle, Klaus Kern, Alexander Holleitner, Christoph Kastl and Marko Burghard ()
Additional contact information
Lukas Powalla: Max-Planck-Institut für Festkörperforschung
Jonas Kiemle: Technical University of Munich
Elio J. König: Max-Planck-Institut für Festkörperforschung
Andreas P. Schnyder: Max-Planck-Institut für Festkörperforschung
Johannes Knolle: MCQST
Klaus Kern: Max-Planck-Institut für Festkörperforschung
Alexander Holleitner: Technical University of Munich
Christoph Kastl: Technical University of Munich
Marko Burghard: Max-Planck-Institut für Festkörperforschung

Nature Communications, 2022, vol. 13, issue 1, 1-8

Abstract: Abstract Experimental control of local spin-charge interconversion is of primary interest for spintronics. Van der Waals (vdW) heterostructures combining graphene with a strongly spin-orbit coupled two-dimensional (2D) material enable such functionality by design. Electric spin valve experiments have thus far provided global information on such devices, while leaving the local interplay between symmetry breaking, charge flow across the heterointerface and aspects of topology unexplored. Here, we probe the gate-tunable local spin polarisation in current-driven graphene/WTe2 heterostructures through magneto-optical Kerr microscopy. Even for a nominal in-plane transport, substantial out-of-plane spin accumulation is induced by a corresponding out-of-plane current flow. We present a theoretical model which fully explains the gate- and bias-dependent onset and spatial distribution of the intense Kerr signal as a result of a non-linear anomalous Hall effect in the heterostructure, which is enabled by its reduced point group symmetry. Our findings unravel the potential of 2D heterostructure engineering for harnessing topological phenomena for spintronics, and constitute an important step toward nanoscale, electrical spin control.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-30744-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30744-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-30744-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30744-3