A modular spring-loaded actuator for mechanical activation of membrane proteins
A. Mills,
N. Aissaoui,
D. Maurel,
J. Elezgaray,
F. Morvan,
J. J. Vasseur,
E. Margeat,
R. B. Quast,
J. Lai Kee-Him,
N. Saint,
C. Benistant,
A. Nord,
F. Pedaci and
G. Bellot ()
Additional contact information
A. Mills: Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS
N. Aissaoui: Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS
D. Maurel: Université de Montpellier, Institut de Génomique Fonctionnelle, INSERM, CNRS
J. Elezgaray: CRPP, CNRS, UMR 5031, Université de Bordeaux
F. Morvan: IBMM, Université de Montpellier, CNRS, ENSCM
J. J. Vasseur: IBMM, Université de Montpellier, CNRS, ENSCM
E. Margeat: Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS
R. B. Quast: Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS
J. Lai Kee-Him: Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS
N. Saint: PHYMEDEXP, Université de Montpellier, CNRS, INSERM
C. Benistant: Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS
A. Nord: Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS
F. Pedaci: Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS
G. Bellot: Université de Montpellier, Centre de Biochimie Structurale, INSERM, CNRS
Nature Communications, 2022, vol. 13, issue 1, 1-10
Abstract:
Abstract How cells respond to mechanical forces by converting them into biological signals underlie crucial cellular processes. Our understanding of mechanotransduction has been hindered by technical barriers, including limitations in our ability to effectively apply low range piconewton forces to specific mechanoreceptors on cell membranes without laborious and repetitive trials. To overcome these challenges we introduce the Nano-winch, a robust, easily assembled, programmable DNA origami-based molecular actuator. The Nano-winch is designed to manipulate multiple mechanoreceptors in parallel by exerting fine-tuned, low- piconewton forces in autonomous and remotely activated modes via adjustable single- and double-stranded DNA linkages, respectively. Nano-winches in autonomous mode can land and operate on the cell surface. Targeting the device to integrin stimulated detectable downstream phosphorylation of focal adhesion kinase, an indication that Nano-winches can be applied to study cellular mechanical processes. Remote activation mode allowed finer extension control and greater force exertion. We united remotely activated Nano-winches with single-channel bilayer experiments to directly observe the opening of a channel by mechanical force in the force responsive gated channel protein, BtuB. This customizable origami provides an instrument-free approach that can be applied to control and explore a diversity of mechanotransduction circuits on living cells.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-30745-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30745-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-30745-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().