EconPapers    
Economics at your fingertips  
 

Proposed energy-metabolisms cannot explain the atmospheric chemistry of Venus

Sean Jordan (), Oliver Shorttle and Paul B. Rimmer
Additional contact information
Sean Jordan: University of Cambridge
Oliver Shorttle: University of Cambridge
Paul B. Rimmer: University of Cambridge

Nature Communications, 2022, vol. 13, issue 1, 1-10

Abstract: Abstract Life in the clouds of Venus, if present in sufficiently high abundance, must be affecting the atmospheric chemistry. It has been proposed that abundant Venusian life could obtain energy from its environment using three possible sulfur energy-metabolisms. These metabolisms raise the possibility of Venus’s enigmatic cloud-layer SO2-depletion being caused by life. We here couple each proposed energy-metabolism to a photochemical-kinetics code and self-consistently predict the composition of Venus’s atmosphere under the scenario that life produces the observed SO2-depletion. Using this photo-bio-chemical kinetics code, we show that all three metabolisms can produce SO2-depletions, but do so by violating other observational constraints on Venus’s atmospheric chemistry. We calculate the maximum possible biomass density of sulfur-metabolising life in the clouds, before violating observational constraints, to be ~10−5 − 10−3 mg m−3. The methods employed are equally applicable to aerial biospheres on Venus-like exoplanets, planets that are optimally poised for atmospheric characterisation in the near future.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-30804-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30804-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-30804-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30804-8