EconPapers    
Economics at your fingertips  
 

Association of mitochondrial DNA content, heteroplasmies and inter-generational transmission with autism

Yiqin Wang, Xiaoxian Guo, Xiumei Hong, Guoying Wang, Colleen Pearson, Barry Zuckerman, Andrew G. Clark, Kimberly O. O’Brien, Xiaobin Wang () and Zhenglong Gu ()
Additional contact information
Yiqin Wang: Cornell University
Xiaoxian Guo: Cornell University
Xiumei Hong: Johns Hopkins University Bloomberg School of Public Health
Guoying Wang: Johns Hopkins University Bloomberg School of Public Health
Colleen Pearson: Boston University School of Medicine and Boston Medical Center
Barry Zuckerman: Boston University School of Medicine and Boston Medical Center
Andrew G. Clark: Cornell University
Kimberly O. O’Brien: Cornell University
Xiaobin Wang: Johns Hopkins University Bloomberg School of Public Health
Zhenglong Gu: Cornell University

Nature Communications, 2022, vol. 13, issue 1, 1-14

Abstract: Abstract Mitochondria are essential for brain development. While previous studies linked dysfunctional mitochondria with autism spectrum disorder (ASD), the role of the mitochondrial genome (mtDNA) in ASD risk is largely unexplored. This study investigates the association of mtDNA heteroplasmies (co-existence of mutated and unmutated mtDNA) and content with ASD, as well as its inter-generational transmission and sex differences among two independent samples: a family-based study (n = 1,938 families with parents, probands and sibling controls) and a prospective birth cohort (n = 997 mother-child pairs). In both samples, predicted pathogenic (PP) heteroplasmies in children are associated with ASD risk (Meta-OR = 1.56, P = 0.00068). Inter-generational transmission of mtDNA reveals attenuated effects of purifying selection on maternal heteroplasmies in children with ASD relative to controls, particularly among males. Among children with ASD and PP heteroplasmies, increased mtDNA content shows benefits for cognition, communication, and behaviors (P ≤ 0.02). These results underscore the value of exploring maternal and newborn mtDNA in ASD.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-30805-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30805-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-30805-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30805-7