Compact light field photography towards versatile three-dimensional vision
Xiaohua Feng (),
Yayao Ma and
Liang Gao ()
Additional contact information
Xiaohua Feng: Zhejiang Laboratory
Yayao Ma: University of California
Liang Gao: University of California
Nature Communications, 2022, vol. 13, issue 1, 1-10
Abstract:
Abstract Inspired by natural living systems, modern cameras can attain three-dimensional vision via multi-view geometry like compound eyes in flies, or time-of-flight sensing like echolocation in bats. However, high-speed, accurate three-dimensional sensing capable of scaling over an extensive distance range and coping well with severe occlusions remains challenging. Here, we report compact light field photography for acquiring large-scale light fields with simple optics and a small number of sensors in arbitrary formats ranging from two-dimensional area to single-point detectors, culminating in a dense multi-view measurement with orders of magnitude lower dataload. We demonstrated compact light field photography for efficient multi-view acquisition of time-of-flight signals to enable snapshot three-dimensional imaging with an extended depth range and through severe scene occlusions. Moreover, we show how compact light field photography can exploit curved and disconnected surfaces for real-time non-line-of-sight 3D vision. Compact light field photography will broadly benefit high-speed 3D imaging and open up new avenues in various disciplines.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-31087-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31087-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-31087-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().