All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors
Akhil Dodda,
Nicholas Trainor,
Joan. M. Redwing and
Saptarshi Das ()
Additional contact information
Akhil Dodda: Penn State University
Nicholas Trainor: Penn State University
Joan. M. Redwing: Penn State University
Saptarshi Das: Penn State University
Nature Communications, 2022, vol. 13, issue 1, 1-12
Abstract:
Abstract In the emerging era of the internet of things (IoT), ubiquitous sensors continuously collect, consume, store, and communicate a huge volume of information which is becoming increasingly vulnerable to theft and misuse. Modern software cryptosystems require extensive computational infrastructure for implementing ciphering algorithms, making them difficult to be adopted by IoT edge sensors that operate with limited hardware resources and at low energy budgets. Here we propose and experimentally demonstrate an “all-in-one” 8 × 8 array of robust, low-power, and bio-inspired crypto engines monolithically integrated with IoT edge sensors based on two-dimensional (2D) memtransistors. Each engine comprises five 2D memtransistors to accomplish sensing and encoding functionalities. The ciphered information is shown to be secure from an eavesdropper with finite resources and access to deep neural networks. Our hardware platform consists of a total of 320 fully integrated monolayer MoS2-based memtransistors and consumes energy in the range of hundreds of picojoules and offers near-sensor security.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-31148-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31148-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-31148-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().