Highly luminescent scintillating hetero-ligand MOF nanocrystals with engineered Stokes shift for photonic applications
J. Perego,
Charl X. Bezuidenhout,
I. Villa,
F. Cova,
R. Crapanzano,
I. Frank,
F. Pagano,
N. Kratochwill,
E. Auffray,
S. Bracco,
A. Vedda,
C. Dujardin,
P. E. Sozzani,
F. Meinardi,
A. Comotti () and
A. Monguzzi ()
Additional contact information
J. Perego: Università degli Studi Milano-Bicocca
Charl X. Bezuidenhout: Università degli Studi Milano-Bicocca
I. Villa: Academy of Sciences of the Czech Republic
F. Cova: Università degli Studi Milano-Bicocca
R. Crapanzano: Università degli Studi Milano-Bicocca
I. Frank: CERN
F. Pagano: CERN
N. Kratochwill: CERN
E. Auffray: CERN
S. Bracco: Università degli Studi Milano-Bicocca
A. Vedda: Università degli Studi Milano-Bicocca
C. Dujardin: Université de Lyon
P. E. Sozzani: Università degli Studi Milano-Bicocca
F. Meinardi: Università degli Studi Milano-Bicocca
A. Comotti: Università degli Studi Milano-Bicocca
A. Monguzzi: Università degli Studi Milano-Bicocca
Nature Communications, 2022, vol. 13, issue 1, 1-10
Abstract:
Abstract Large Stokes shift fast emitters show a negligible reabsorption of their luminescence, a feature highly desirable for several applications such as fluorescence imaging, solar-light managing, and fabricating sensitive scintillating detectors for medical imaging and high-rate high-energy physics experiments. Here we obtain high efficiency luminescence with significant Stokes shift by exploiting fluorescent conjugated acene building blocks arranged in nanocrystals. Two ligands of equal molecular length and connectivity, yet complementary electronic properties, are co-assembled by zirconium oxy-hydroxy clusters, generating crystalline hetero-ligand metal-organic framework (MOF) nanocrystals. The diffusion of singlet excitons within the MOF and the matching of ligands absorption and emission properties enables an ultrafast activation of the low energy emission in the 100 ps time scale. The hybrid nanocrystals show a fluorescence quantum efficiency of ~60% and a Stokes shift as large as 750 meV (~6000 cm−1), which suppresses the emission reabsorption also in bulk devices. The fabricated prototypal nanocomposite fast scintillator shows benchmark performances which compete with those of some inorganic and organic commercial systems.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-31163-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31163-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-31163-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().