EconPapers    
Economics at your fingertips  
 

Functional but not obligatory link between microsaccades and neural modulation by covert spatial attention

Baiwei Liu (), Anna C. Nobre and Freek van Ede ()
Additional contact information
Baiwei Liu: Vrije Universiteit Amsterdam
Anna C. Nobre: University of Oxford
Freek van Ede: Vrije Universiteit Amsterdam

Nature Communications, 2022, vol. 13, issue 1, 1-10

Abstract: Abstract Covert spatial attention is associated with spatial modulation of neural activity as well as with directional biases in fixational eye movements known as microsaccades. We studied how these two ‘fingerprints’ of attention are interrelated in humans. We investigated spatial modulation of 8-12 Hz EEG alpha activity and microsaccades when attention is directed internally within the spatial layout of visual working memory. Consistent with a common origin, spatial modulations of alpha activity and microsaccades co-vary: alpha lateralisation is stronger in trials with microsaccades toward versus away from the memorised location of the to-be-attended item and occurs earlier in trials with earlier microsaccades toward this item. Critically, however, trials without attention-driven microsaccades nevertheless show clear spatial modulation of alpha activity – comparable to trials with attention-driven microsaccades. Thus, directional biases in microsaccades correlate with neural signatures of spatial attention, but they are not necessary for neural modulation by spatial attention to be manifest.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-31217-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31217-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-31217-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31217-3