EconPapers    
Economics at your fingertips  
 

Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity

Chin-Hsien Cheng and Simon A. T. Redfern ()
Additional contact information
Chin-Hsien Cheng: Nanjing University of Information Science and Technology (NUIST)
Simon A. T. Redfern: Nanyang Technological University

Nature Communications, 2022, vol. 13, issue 1, 1-11

Abstract: Abstract We estimate the causal contributions of spatiotemporal changes in temperature (T) and precipitation (Pr) to changes in Earth’s atmospheric methane concentration (CCH4) and its isotope ratio δ13CH4 over the last four decades. We identify oscillations between positive and negative feedbacks, showing that both contribute to increasing CCH4. Interannually, increased emissions via positive feedbacks (e.g. wetland emissions and wildfires) with higher land surface air temperature (LSAT) are often followed by increasing CCH4 due to weakened methane sink via atmospheric •OH, via negative feedbacks with lowered sea surface temperatures (SST), especially in the tropics. Over decadal time scales, we find alternating rate-limiting factors for methane oxidation: when CCH4 is limiting, positive methane-climate feedback via direct oceanic emissions dominates; when •OH is limiting, negative feedback is favoured. Incorporating the interannually increasing CCH4 via negative feedbacks gives historical methane-climate feedback sensitivity ≈ 0.08 W m−2 °C−1, much higher than the IPCC AR6 estimate.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-31345-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31345-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-31345-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31345-w