EconPapers    
Economics at your fingertips  
 

A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system

Jongmin Lee (), Roger Ding, Justin Christensen, Randy R. Rosenthal, Aaron Ison, Daniel P. Gillund, David Bossert, Kyle H. Fuerschbach, William Kindel, Patrick S. Finnegan, Joel R. Wendt, Michael Gehl, Ashok Kodigala, Hayden McGuinness, Charles A. Walker, Shanalyn A. Kemme, Anthony Lentine, Grant Biedermann and Peter D. D. Schwindt
Additional contact information
Jongmin Lee: Sandia National Laboratories
Roger Ding: Sandia National Laboratories
Justin Christensen: Sandia National Laboratories
Randy R. Rosenthal: Sandia National Laboratories
Aaron Ison: Sandia National Laboratories
Daniel P. Gillund: Sandia National Laboratories
David Bossert: Sandia National Laboratories
Kyle H. Fuerschbach: Sandia National Laboratories
William Kindel: Sandia National Laboratories
Patrick S. Finnegan: Sandia National Laboratories
Joel R. Wendt: Sandia National Laboratories
Michael Gehl: Sandia National Laboratories
Ashok Kodigala: Sandia National Laboratories
Hayden McGuinness: Sandia National Laboratories
Charles A. Walker: Sandia National Laboratories
Shanalyn A. Kemme: Sandia National Laboratories
Anthony Lentine: Sandia National Laboratories
Grant Biedermann: University of Oklahoma
Peter D. D. Schwindt: Sandia National Laboratories

Nature Communications, 2022, vol. 13, issue 1, 1-12

Abstract: Abstract The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. Here, we describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam. In addition, we designed a multi-channel photonic-integrated-circuit-compatible laser system implemented with a single seed laser and single sideband modulators in a time-multiplexed manner, reducing the number of optical channels connected to the sensor head. In a compact sensor head containing the vacuum package, sub-Doppler cooling in the GMOT produces 15 μK temperatures, and the GMOT can operate at a 20 Hz data rate. We validated the atomic coherence with Ramsey interferometry using microwave spectroscopy, then demonstrated a light-pulse atom interferometer in a gravimeter configuration for a 10 Hz measurement data rate and T = 0–4.5 ms interrogation time, resulting in Δg/g = 2.0 × 10−6. This work represents a significant step towards deployable cold-atom inertial sensors under large amplitude motional dynamics.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-31410-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31410-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-31410-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31410-4