EconPapers    
Economics at your fingertips  
 

Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators

Jong-Guk Choi, Jaehyeon Park, Min-Gu Kang, Doyoon Kim, Jae-Sung Rieh, Kyung-Jin Lee, Kab-Jin Kim () and Byong-Guk Park ()
Additional contact information
Jong-Guk Choi: KAIST
Jaehyeon Park: KAIST
Min-Gu Kang: KAIST
Doyoon Kim: Korea University
Jae-Sung Rieh: Korea University
Kyung-Jin Lee: KAIST
Kab-Jin Kim: KAIST
Byong-Guk Park: KAIST

Nature Communications, 2022, vol. 13, issue 1, 1-8

Abstract: Abstract Spin Hall nano-oscillators (SHNOs) exploiting current-driven magnetization auto-oscillation have recently received much attention because of their potential for neuromorphic computing. Widespread applications of neuromorphic devices with SHNOs require an energy-efficient method of tuning oscillation frequency over broad ranges and storing trained frequencies in SHNOs without the need for additional memory circuitry. While the voltage-driven frequency tuning of SHNOs has been demonstrated, it was volatile and limited to megahertz ranges. Here, we show that the frequency of SHNOs is controlled up to 2.1 GHz by an electric field of 1.25 MV/cm. The large frequency tuning is attributed to the voltage-controlled magnetic anisotropy (VCMA) in a perpendicularly magnetized Ta/Pt/[Co/Ni]n/Co/AlOx structure. Moreover, the non-volatile VCMA effect enables cumulative control of the frequency using repetitive voltage pulses which mimic the potentiation and depression functions of biological synapses. Our results suggest that the voltage-driven frequency tuning of SHNOs facilitates the development of energy-efficient neuromorphic devices.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-31493-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31493-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-31493-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31493-z