EconPapers    
Economics at your fingertips  
 

Multiple social encounters can eliminate Crozier’s paradox and stabilise genetic kin recognition

Thomas W. Scott (), Alan Grafen and Stuart A. West
Additional contact information
Thomas W. Scott: University of Oxford
Alan Grafen: University of Oxford
Stuart A. West: University of Oxford

Nature Communications, 2022, vol. 13, issue 1, 1-19

Abstract: Abstract Crozier’s paradox suggests that genetic kin recognition will not be evolutionarily stable. The problem is that more common tags (markers) are more likely to be recognised and helped. This causes common tags to increase in frequency, and hence eliminates the genetic variability that is required for genetic kin recognition. It has therefore been assumed that genetic kin recognition can only be stable if there is some other factor maintaining tag diversity, such as the advantage of rare alleles in host-parasite interactions. We show that allowing for multiple social encounters before each social interaction can eliminate Crozier’s paradox, because it allows individuals with rare tags to find others with the same tag. We also show that rare tags are better indicators of relatedness, and hence better at helping individuals avoid interactions with non-cooperative cheats. Consequently, genetic kin recognition provides an advantage to rare tags that maintains tag diversity, and stabilises itself.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-31545-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31545-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-31545-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31545-4