EconPapers    
Economics at your fingertips  
 

Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases

Johannes Herrmann (), Sergi Masot Llima, Ants Remm, Petr Zapletal, Nathan A. McMahon, Colin Scarato, François Swiadek, Christian Kraglund Andersen, Christoph Hellings, Sebastian Krinner, Nathan Lacroix, Stefania Lazar, Michael Kerschbaum, Dante Colao Zanuz, Graham J. Norris, Michael J. Hartmann, Andreas Wallraff and Christopher Eichler ()
Additional contact information
Johannes Herrmann: ETH Zurich
Sergi Masot Llima: ETH Zurich
Ants Remm: ETH Zurich
Petr Zapletal: Friedrich-Alexander University Erlangen-Nürnberg (FAU)
Nathan A. McMahon: Friedrich-Alexander University Erlangen-Nürnberg (FAU)
Colin Scarato: ETH Zurich
François Swiadek: ETH Zurich
Christian Kraglund Andersen: ETH Zurich
Christoph Hellings: ETH Zurich
Sebastian Krinner: ETH Zurich
Nathan Lacroix: ETH Zurich
Stefania Lazar: ETH Zurich
Michael Kerschbaum: ETH Zurich
Dante Colao Zanuz: ETH Zurich
Graham J. Norris: ETH Zurich
Michael J. Hartmann: Friedrich-Alexander University Erlangen-Nürnberg (FAU)
Andreas Wallraff: ETH Zurich
Christopher Eichler: ETH Zurich

Nature Communications, 2022, vol. 13, issue 1, 1-7

Abstract: Abstract Quantum computing crucially relies on the ability to efficiently characterize the quantum states output by quantum hardware. Conventional methods which probe these states through direct measurements and classically computed correlations become computationally expensive when increasing the system size. Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors. Here, we realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological (SPT) phases of a spin model characterized by a non-zero string order parameter. We benchmark the performance of the QCNN based on approximate ground states of a family of cluster-Ising Hamiltonians which we prepare using a hardware-efficient, low-depth state preparation circuit. We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-31679-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31679-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-31679-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31679-5