Sulfur and chlorine budgets control the ore fertility of arc magmas
Carter Grondahl and
Zoltán Zajacz ()
Additional contact information
Carter Grondahl: University of Toronto
Zoltán Zajacz: University of Toronto
Nature Communications, 2022, vol. 13, issue 1, 1-11
Abstract:
Abstract Continental arc magmas supply the ore-forming element budget of most globally important porphyry-type ore deposits. However, the processes enabling certain arc segments to preferentially generate giant porphyry deposits remain highly debated. Here we evaluate the large-scale covariation of key ore-forming constituents in this setting by studying silicate melt inclusions in volcanic rocks from a fertile-to-barren segment of the Andean Southern Volcanic Zone (33–40 °S). We show that the north-to-south, fertile-to-barren gradient is characterized by a northward increase in S and Cl concentrations and a simultaneous decrease in Cu. Consequently, we suggest that the concentration of S and Cl rather than the concentration of ore metals regulates magmatic-hydrothermal ore fertility, and that the loss of volatiles prior to arrival in the upper crust impacts ore-forming potential more than magmatic sulfide saturation-related ore metal scavenging.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-31894-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31894-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-31894-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().