Forecasting the evolution of fast-changing transportation networks using machine learning
Weihua Lei,
Luiz G. A. Alves and
Luís A. Nunes Amaral ()
Additional contact information
Weihua Lei: Northwestern University
Luiz G. A. Alves: Northwestern University
Luís A. Nunes Amaral: Northwestern University
Nature Communications, 2022, vol. 13, issue 1, 1-12
Abstract:
Abstract Transportation networks play a critical role in human mobility and the exchange of goods, but they are also the primary vehicles for the worldwide spread of infections, and account for a significant fraction of CO2 emissions. We investigate the edge removal dynamics of two mature but fast-changing transportation networks: the Brazilian domestic bus transportation network and the U.S. domestic air transportation network. We use machine learning approaches to predict edge removal on a monthly time scale and find that models trained on data for a given month predict edge removals for the same month with high accuracy. For the air transportation network, we also find that models trained for a given month are still accurate for other months even in the presence of external shocks. We take advantage of this approach to forecast the impact of a hypothetical dramatic reduction in the scale of the U.S. air transportation network as a result of policies to reduce CO2 emissions. Our forecasting approach could be helpful in building scenarios for planning future infrastructure.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-31911-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31911-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-31911-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().