EconPapers    
Economics at your fingertips  
 

Spidroin N-terminal domain forms amyloid-like fibril based hydrogels and provides a protein immobilization platform

Tina Arndt, Kristaps Jaudzems, Olga Shilkova, Juanita Francis, Mathias Johansson, Peter R. Laity, Cagla Sahin, Urmimala Chatterjee, Nina Kronqvist, Edgar Barajas-Ledesma, Rakesh Kumar, Gefei Chen, Roger Strömberg, Axel Abelein, Maud Langton, Michael Landreh, Andreas Barth, Chris Holland, Jan Johansson and Anna Rising ()
Additional contact information
Tina Arndt: Karolinska Institutet, Neo
Kristaps Jaudzems: Latvian Institute of Organic Synthesis
Olga Shilkova: Karolinska Institutet, Neo
Juanita Francis: Karolinska Institutet, Neo
Mathias Johansson: Swedish University of Agricultural Sciences
Peter R. Laity: The University of Sheffield
Cagla Sahin: Karolinska Institutet
Urmimala Chatterjee: Karolinska Institutet, Neo
Nina Kronqvist: Karolinska Institutet, Neo
Edgar Barajas-Ledesma: Karolinska Institutet
Rakesh Kumar: Karolinska Institutet, Neo
Gefei Chen: Karolinska Institutet, Neo
Roger Strömberg: Karolinska Institutet, Neo
Axel Abelein: Karolinska Institutet, Neo
Maud Langton: Swedish University of Agricultural Sciences
Michael Landreh: Karolinska Institutet
Andreas Barth: Stockholm University
Chris Holland: The University of Sheffield
Jan Johansson: Karolinska Institutet, Neo
Anna Rising: Karolinska Institutet, Neo

Nature Communications, 2022, vol. 13, issue 1, 1-14

Abstract: Abstract Recombinant spider silk proteins (spidroins) have multiple potential applications in development of novel biomaterials, but their multimodal and aggregation-prone nature have complicated production and straightforward applications. Here, we report that recombinant miniature spidroins, and importantly also the N-terminal domain (NT) on its own, rapidly form self-supporting and transparent hydrogels at 37 °C. The gelation is caused by NT α-helix to β-sheet conversion and formation of amyloid-like fibrils, and fusion proteins composed of NT and green fluorescent protein or purine nucleoside phosphorylase form hydrogels with intact functions of the fusion moieties. Our findings demonstrate that recombinant NT and fusion proteins give high expression yields and bestow attractive properties to hydrogels, e.g., transparency, cross-linker free gelation and straightforward immobilization of active proteins at high density.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-32093-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32093-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-32093-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32093-7