EconPapers    
Economics at your fingertips  
 

Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes

Zeyu Deng (), Tara P. Mishra, Eunike Mahayoni, Qianli Ma, Aaron Jue Kang Tieu, Olivier Guillon, Jean-Noël Chotard, Vincent Seznec, Anthony K. Cheetham, Christian Masquelier, Gopalakrishnan Sai Gautam and Pieremanuele Canepa ()
Additional contact information
Zeyu Deng: National University of Singapore
Tara P. Mishra: National University of Singapore
Eunike Mahayoni: Laboratoire de Réactivité et de Chimie des Solides (LRCS), CNRS UMR 7314, Université de Picardie Jules Verne
Qianli Ma: Materials Synthesis and Processing (IEK-1)
Aaron Jue Kang Tieu: National University of Singapore
Olivier Guillon: Materials Synthesis and Processing (IEK-1)
Jean-Noël Chotard: Laboratoire de Réactivité et de Chimie des Solides (LRCS), CNRS UMR 7314, Université de Picardie Jules Verne
Vincent Seznec: Laboratoire de Réactivité et de Chimie des Solides (LRCS), CNRS UMR 7314, Université de Picardie Jules Verne
Anthony K. Cheetham: National University of Singapore
Christian Masquelier: Laboratoire de Réactivité et de Chimie des Solides (LRCS), CNRS UMR 7314, Université de Picardie Jules Verne
Gopalakrishnan Sai Gautam: Indian Institute of Science
Pieremanuele Canepa: National University of Singapore

Nature Communications, 2022, vol. 13, issue 1, 1-14

Abstract: Abstract Lithium and sodium (Na) mixed polyanion solid electrolytes for all-solid-state batteries display some of the highest ionic conductivities reported to date. However, the effect of polyanion mixing on the ion-transport properties is still not fully understood. Here, we focus on Na1+xZr2SixP3−xO12 (0 ≤ x ≤ 3) NASICON electrolyte to elucidate the role of polyanion mixing on the Na-ion transport properties. Although NASICON is a widely investigated system, transport properties derived from experiments or theory vary by orders of magnitude. We use more than 2000 distinct ab initio-based kinetic Monte Carlo simulations to map the compositional space of NASICON over various time ranges, spatial resolutions and temperatures. Via electrochemical impedance spectroscopy measurements on samples with different sodium content, we find that the highest ionic conductivity (i.e., about 0.165 S cm–1 at 473 K) is experimentally achieved in Na3.4Zr2Si2.4P0.6O12, in line with simulations (i.e., about 0.170 S cm–1 at 473 K). The theoretical studies indicate that doped NASICON compounds (especially those with a silicon content x ≥ 2.4) can improve the Na-ion mobility compared to undoped NASICON compositions.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-32190-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32190-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-32190-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32190-7