Black carbon and dust alter the response of mountain snow cover under climate change
Marion Réveillet (),
Marie Dumont (),
Simon Gascoin,
Matthieu Lafaysse,
Pierre Nabat,
Aurélien Ribes,
Rafife Nheili,
Francois Tuzet,
Martin Ménégoz,
Samuel Morin,
Ghislain Picard and
Paul Ginoux
Additional contact information
Marion Réveillet: Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Etudes de la Neige
Marie Dumont: Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Etudes de la Neige
Simon Gascoin: Centre d’Etudes Spatiales de la Biosphère (CESBIO), Université de Toulouse, CNRS/CNES/IRD/INRAE/UPS
Matthieu Lafaysse: Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Etudes de la Neige
Pierre Nabat: CNRM, Université de Toulouse, Météo-France, CNRS
Aurélien Ribes: CNRM, Université de Toulouse, Météo-France, CNRS
Rafife Nheili: Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Etudes de la Neige
Francois Tuzet: Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Etudes de la Neige
Martin Ménégoz: Univ. Grenoble Alpes, CNRS, IRD, IGE
Samuel Morin: CNRM, Université de Toulouse, Météo-France, CNRS
Ghislain Picard: Univ. Grenoble Alpes, CNRS, IRD, IGE
Paul Ginoux: NOAA Geophysical Fluid Dynamics Laboratory
Nature Communications, 2022, vol. 13, issue 1, 1-12
Abstract:
Abstract By darkening the snow surface, mineral dust and black carbon (BC) deposition enhances snowmelt and triggers numerous feedbacks. Assessments of their long-term impact at the regional scale are still largely missing despite the environmental and socio-economic implications of snow cover changes. Here we show, using numerical simulations, that dust and BC deposition advanced snowmelt by 17 ± 6 days on average in the French Alps and the Pyrenees over the 1979–2018 period. BC and dust also advanced by 10-15 days the peak melt water runoff, a substantial effect on the timing of water resources availability. We also demonstrate that the decrease in BC deposition since the 1980s moderates the impact of current warming on snow cover decline. Hence, accounting for changes in light-absorbing particles deposition is required to improve the accuracy of snow cover reanalyses and climate projections, that are crucial for better understanding the past and future evolution of mountain social-ecological systems.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-32501-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32501-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-32501-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().