Flexible iontronics based on 2D nanofluidic material
Di Wei (),
Feiyao Yang,
Zhuoheng Jiang and
Zhonglin Wang ()
Additional contact information
Di Wei: Chinese Academy of Sciences
Feiyao Yang: Chinese Academy of Sciences
Zhuoheng Jiang: Chinese Academy of Sciences
Zhonglin Wang: Chinese Academy of Sciences
Nature Communications, 2022, vol. 13, issue 1, 1-11
Abstract:
Abstract Iontronics focuses on the interactions between electrons and ions, playing essential roles in most processes across physics, chemistry and life science. Osmotic power source as an example of iontronics, could transform ion gradient into electrical energy, however, it generates low power, sensitive to humidity and can’t operate under freezing point. Herein, based on 2D nanofluidic graphene oxide material, we demonstrate an ultrathin (∼10 µm) osmotic power source with voltage of 1.5 V, volumetric specific energy density of 6 mWh cm−3 and power density of 28 mW cm−3, achieving the highest values so far. Coupled with triboelectric nanogenerator, it could form a self-charged conformable triboiontronic device. Furthermore, the 3D aerogel scales up areal power density up to 1.3 mW cm−2 purely from ion gradient based on nanoconfined enhancement from graphene oxide that can operate under −40 °C and overcome humidity limitations, enabling to power the future implantable electronics in human-machine interface.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-32699-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32699-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-32699-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().