Thiol-Yne click chemistry of acetylene-enabled macrocyclization
Shiwei Lü,
Zipeng Wang and
Shifa Zhu ()
Additional contact information
Shiwei Lü: South China University of Technology
Zipeng Wang: South China University of Technology
Shifa Zhu: South China University of Technology
Nature Communications, 2022, vol. 13, issue 1, 1-11
Abstract:
Abstract Macrocycles have fascinated scientists for over half a century due to their aesthetically appealing structures and broad utilities in chemical, material, and biological research. However, the efficient preparation of macrocycles remains an ongoing research challenge in organic synthesis because of the high entropic penalty involved in the ring-closing process. Herein we report a photocatalyzed thiol-yne click reaction to forge diverse sulfur-containing macrocycles (up to 35-membered ring) and linear C2-linked 1,2-(S-S/S-P/S-N) functionalized molecules, starting from the simplest alkyne, acetylene. Preliminary mechanistic experiments support a visible light-mediated radical-polar crossover dihydrothiolation process. This operationally straightforward reaction is also amenable to the synthesis of organometallic complexes, bis-sulfoxide ligand and a pleuromutilin antibiotic drug Tiamulin, which provides a practical route to synthesize highly valued compounds from the feedstock acetylene gas.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-32723-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32723-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-32723-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().