EconPapers    
Economics at your fingertips  
 

Control of structure and spin texture in the van der Waals layered magnet CrSBr

J. Klein (), T. Pham, J. D. Thomsen, J. B. Curtis, T. Denneulin, M. Lorke, M. Florian, A. Steinhoff, R. A. Wiscons, J. Luxa, Z. Sofer, F. Jahnke, P. Narang () and F. M. Ross ()
Additional contact information
J. Klein: Massachusetts Institute of Technology
T. Pham: Massachusetts Institute of Technology
J. D. Thomsen: Massachusetts Institute of Technology
J. B. Curtis: Harvard University
T. Denneulin: Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich
M. Lorke: Institut für Theoretische Physik, Universität Bremen
M. Florian: Institut für Theoretische Physik, Universität Bremen
A. Steinhoff: Institut für Theoretische Physik, Universität Bremen
R. A. Wiscons: Columbia University
J. Luxa: University of Chemistry and Technology Prague
Z. Sofer: University of Chemistry and Technology Prague
F. Jahnke: Institut für Theoretische Physik, Universität Bremen
P. Narang: Harvard University
F. M. Ross: Massachusetts Institute of Technology

Nature Communications, 2022, vol. 13, issue 1, 1-9

Abstract: Abstract Controlling magnetism at nanometer length scales is essential for realizing high-performance spintronic, magneto-electric and topological devices and creating on-demand spin Hamiltonians probing fundamental concepts in physics. Van der Waals (vdW)-bonded layered magnets offer exceptional opportunities for such spin texture engineering. Here, we demonstrate nanoscale structural control in the layered magnet CrSBr with the potential to create spin patterns without the environmental sensitivity that has hindered such manipulations in other vdW magnets. We drive a local phase transformation using an electron beam that moves atoms and exchanges bond directions, effectively creating regions that have vertical vdW layers embedded within the initial horizontally vdW bonded exfoliated flakes. We calculate that the newly formed two-dimensional structure is ferromagnetically ordered in-plane with an energy gap in the visible spectrum, and weak antiferromagnetism between the planes, suggesting possibilities for creating spin textures and quantum magnetic phases.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-32737-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32737-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-32737-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32737-8