Investigation of the evolution of Pd-Pt supported on ceria for dry and wet methane oxidation
Núria. J. Divins (),
Andrea Braga,
Xavier Vendrell,
Isabel Serrano,
Xènia Garcia,
Lluís Soler,
Ilaria Lucentini,
Maila Danielis,
Andrea Mussio,
Sara Colussi,
Ignacio J. Villar-Garcia,
Carlos Escudero,
Alessandro Trovarelli and
Jordi Llorca ()
Additional contact information
Núria. J. Divins: Universitat Politècnica de Catalunya, EEBE
Andrea Braga: Universitat Politècnica de Catalunya, EEBE
Xavier Vendrell: Universitat Politècnica de Catalunya, EEBE
Isabel Serrano: Universitat Politècnica de Catalunya, EEBE
Xènia Garcia: Universitat Politècnica de Catalunya, EEBE
Lluís Soler: Universitat Politècnica de Catalunya, EEBE
Ilaria Lucentini: Universitat Politècnica de Catalunya, EEBE
Maila Danielis: Università di Udine, and INSTM
Andrea Mussio: Università di Udine, and INSTM
Sara Colussi: Università di Udine, and INSTM
Ignacio J. Villar-Garcia: ALBA Synchrotron Light Source
Carlos Escudero: ALBA Synchrotron Light Source
Alessandro Trovarelli: Università di Udine, and INSTM
Jordi Llorca: Universitat Politècnica de Catalunya, EEBE
Nature Communications, 2022, vol. 13, issue 1, 1-11
Abstract:
Abstract Efficiently treating methane emissions in transportation remains a challenge. Here, we investigate palladium and platinum mono- and bimetallic ceria-supported catalysts synthesized by mechanical milling and by traditional impregnation for methane total oxidation under dry and wet conditions, reproducing those present in the exhaust of natural gas vehicles. By applying a toolkit of in situ synchrotron techniques (X-ray diffraction, X-ray absorption and ambient pressure photoelectron spectroscopies), together with transmission electron microscopy, we show that the synthesis method greatly influences the interaction and structure at the nanoscale. Our results reveal that the components of milled catalysts have a higher ability to transform metallic Pd into Pd oxide species strongly interacting with the support, and achieve a modulated PdO/Pd ratio than traditionally-synthesized catalysts. We demonstrate that the unique structures attained by milling are key for the catalytic activity and correlate with higher methane conversion and longer stability in the wet feed.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-32765-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32765-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-32765-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().