Earlier ice loss accelerates lake warming in the Northern Hemisphere
Xinyu Li,
Shushi Peng (),
Yi Xi,
R. Iestyn Woolway and
Gang Liu
Additional contact information
Xinyu Li: Peking University
Shushi Peng: Peking University
Yi Xi: Peking University
R. Iestyn Woolway: Bangor University, Menai Bridge
Gang Liu: Peking University
Nature Communications, 2022, vol. 13, issue 1, 1-9
Abstract:
Abstract How lake temperatures across large geographic regions are responding to widespread alterations in ice phenology (i.e., the timing of seasonal ice formation and loss) remains unclear. Here, we analyse satellite data and global-scale simulations to investigate the contribution of long-term variations in the seasonality of lake ice to surface water temperature trends across the Northern Hemisphere. Our analysis suggests a widespread excess lake surface warming during the months of ice-off which is, on average, 1.4 times that calculated during the open-water season. This excess warming is influenced predominantly by an 8-day advancement in the average timing of ice break-up from 1979 to 2020. Until the permanent loss of lake ice in the future, excess lake warming may be further amplified due to projected future alterations in lake ice phenology. Excess lake warming will likely alter within-lake physical and biogeochemical processes with numerous implications for lake ecosystems.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-32830-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32830-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-32830-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().