Deglacial Subantarctic CO2 outgassing driven by a weakened solubility pump
Yuhao Dai (),
Jimin Yu (),
Haojia Ren and
Xuan Ji
Additional contact information
Yuhao Dai: The Australian National University
Jimin Yu: The Australian National University
Haojia Ren: National Taiwan University
Xuan Ji: The Australian National University
Nature Communications, 2022, vol. 13, issue 1, 1-9
Abstract:
Abstract The Subantarctic Southern Ocean has long been thought to be an important contributor to increases in atmospheric carbon dioxide partial pressure (pCO2) during glacial-interglacial transitions. Extensive studies suggest that a weakened biological pump, a process associated with nutrient utilization efficiency, drove up surface-water pCO2 in this region during deglaciations. By contrast, regional influences of the solubility pump, a process mainly linked to temperature variations, have been largely overlooked. Here, we evaluate relative roles of the biological and solubility pumps in determining surface-water pCO2 variabilities in the Subantarctic Southern Ocean during the last deglaciation, based on paired reconstructions of surface-water pCO2, temperature, and nutrient utilization efficiency. We show that compared to the biological pump, the solubility pump imposed a strong impact on deglacial Subantarctic surface-water pCO2 variabilities. Our findings therefore reveal a previously underappreciated role of the solubility pump in modulating deglacial Subantarctic CO2 release and possibly past atmospheric pCO2 fluctuations.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-32895-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32895-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-32895-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().