EconPapers    
Economics at your fingertips  
 

Chemical deposition of Cu2O films with ultra-low resistivity: correlation with the defect landscape

Abderrahime Sekkat (), Maciej Oskar Liedke, Viet Huong Nguyen, Maik Butterling, Federico Baiutti, Juan de Dios Sirvent Veru, Matthieu Weber, Laetitia Rapenne, Daniel Bellet, Guy Chichignoud, Anne Kaminski-Cachopo, Eric Hirschmann, Andreas Wagner and David Muñoz-Rojas ()
Additional contact information
Abderrahime Sekkat: Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP
Maciej Oskar Liedke: Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf
Viet Huong Nguyen: Phenikaa University
Maik Butterling: Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf
Federico Baiutti: Catalonia Institute for Energy Research (IREC), Jardins de Les Dones de Negre 1
Juan de Dios Sirvent Veru: Catalonia Institute for Energy Research (IREC), Jardins de Les Dones de Negre 1
Matthieu Weber: Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP
Laetitia Rapenne: Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP
Daniel Bellet: Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP
Guy Chichignoud: Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP
Anne Kaminski-Cachopo: Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LaHC
Eric Hirschmann: Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf
Andreas Wagner: Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf
David Muñoz-Rojas: Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP

Nature Communications, 2022, vol. 13, issue 1, 1-11

Abstract: Abstract Cuprous oxide (Cu2O) is a promising p-type semiconductor material for many applications. So far, the lowest resistivity values are obtained for films deposited by physical methods and/or at high temperatures (~1000 °C), limiting their mass integration. Here, Cu2O thin films with ultra-low resistivity values of 0.4 Ω.cm were deposited at only 260 °C by atmospheric pressure spatial atomic layer deposition, a scalable chemical approach. The carrier concentration (7.1014−2.1018 cm−3), mobility (1–86 cm2/V.s), and optical bandgap (2.2–2.48 eV) are easily tuned by adjusting the fraction of oxygen used during deposition. The properties of the films are correlated to the defect landscape, as revealed by a combination of techniques (positron annihilation spectroscopy (PAS), Raman spectroscopy and photoluminescence). Our results reveal the existence of large complex defects and the decrease of the overall defect concentration in the films with increasing oxygen fraction used during deposition.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-32943-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32943-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-32943-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32943-4