EconPapers    
Economics at your fingertips  
 

Spin-selected electron transfer in liquid–solid contact electrification

Shiquan Lin, Laipan Zhu, Zhen Tang and Zhong Lin Wang ()
Additional contact information
Shiquan Lin: Chinese Academy of Sciences
Laipan Zhu: Chinese Academy of Sciences
Zhen Tang: Chinese Academy of Sciences
Zhong Lin Wang: Chinese Academy of Sciences

Nature Communications, 2022, vol. 13, issue 1, 1-9

Abstract: Abstract Electron transfer has been proven the dominant charge carrier during contact electrification at the liquid–solid interface. However, the effect of electron spin in contact electrification remains to be investigated. This study examines the charge transfer between different liquids and ferrimagnetic solids in a magnetic field, focusing on the contribution of O2 molecules to the liquid–solid contact electrification. The findings reveal that magnetic fields promote electron transfer at the O2-containing liquid–solid interfaces. Moreover, magnetic field-induced electron transfer increases at higher O2 concentrations in the liquids and decreases at elevated temperatures. The results indicate spin-selected electron transfer at liquid–solid interface. External magnetic fields can modulate the spin conversion of the radical pairs at the O2-containing liquid and ferrimagnetic solid interfaces due to the Zeeman interaction, promoting electron transfer. A spin-selected electron transfer model for liquid–solid contact electrification is further proposed based on the radical pair mechanism, in which the HO2 molecules and the free unpaired electrons from the ferrimagnetic solids are considered radical pairs. The spin conversion of the [HO2• •e−] pairs is affected by magnetic fields, rendering the electron transfer magnetic field-sensitive.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-32984-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32984-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-32984-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32984-9