Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation
Xin Liu,
Yan Jiao (),
Yao Zheng,
Mietek Jaroniec and
Shi-Zhang Qiao ()
Additional contact information
Xin Liu: The University of Adelaide
Yan Jiao: The University of Adelaide
Yao Zheng: The University of Adelaide
Mietek Jaroniec: Kent State University
Shi-Zhang Qiao: The University of Adelaide
Nature Communications, 2022, vol. 13, issue 1, 1-9
Abstract:
Abstract Electrosynthesis of urea from CO2 and NOX provides an exceptional opportunity for human society, given the increasingly available renewable energy. Urea electrosynthesis is challenging. In order to raise the overall electrosynthesis efficiency, the most critical reaction step for such electrosynthesis, C-N coupling, needs to be significantly improved. The C-N coupling can only happen at a narrow potential window, generally in the low overpotential region, and a fundamental understanding of the C-N coupling is needed for further development of this strategy. In this regard, we perform ab initio Molecular Dynamics simulations to reveal the origin of C-N coupling under a small electrode potential window with both the dynamic nature of water as a solvent, and the electrode potentials considered. We explore the key reaction networks for urea formation on Cu(100) surface in neutral electrolytes. Our work shows excellent agreement with experimentally observed selectivity under different potentials on the Cu electrode. We discover that the *NH and *CO are the key precursors for C-N bonds formation at low overpotential, while at high overpotential the C-N coupling occurs between adsorbed *NH and solvated CO. These insights provide vital information for future spectroscopic measurements and enable us to design new electrochemical systems for more value-added chemicals.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-33258-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33258-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-33258-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().