EconPapers    
Economics at your fingertips  
 

High-precision electron affinity of oxygen

Moa K. Kristiansson (), Kiattichart Chartkunchand, Gustav Eklund, Odd M. Hole, Emma K. Anderson, Nathalie Ruette, Magdalena Kamińska, Najeeb Punnakayathil, José E. Navarro-Navarrete, Stefan Sigurdsson, Jon Grumer, Ansgar Simonsson, Mikael Björkhage, Stefan Rosén, Peter Reinhed, Mikael Blom, Anders Källberg, John D. Alexander, Henrik Cederquist, Henning Zettergren, Henning T. Schmidt and Dag Hanstorp
Additional contact information
Moa K. Kristiansson: Stockholm University
Kiattichart Chartkunchand: Stockholm University
Gustav Eklund: Stockholm University
Odd M. Hole: Stockholm University
Emma K. Anderson: Aarhus University
Nathalie Ruette: Stockholm University
Magdalena Kamińska: Stockholm University
Najeeb Punnakayathil: Stockholm University
José E. Navarro-Navarrete: Stockholm University
Stefan Sigurdsson: Stockholm University
Jon Grumer: Uppsala University
Ansgar Simonsson: Stockholm University
Mikael Björkhage: Stockholm University
Stefan Rosén: Stockholm University
Peter Reinhed: Stockholm University
Mikael Blom: Stockholm University
Anders Källberg: Stockholm University
John D. Alexander: Stockholm University
Henrik Cederquist: Stockholm University
Henning Zettergren: Stockholm University
Henning T. Schmidt: Stockholm University
Dag Hanstorp: University of Gothenburg

Nature Communications, 2022, vol. 13, issue 1, 1-9

Abstract: Abstract Negative ions are important in many areas of science and technology, e.g., in interstellar chemistry, for accelerator-based radionuclide dating, and in anti-matter research. They are unique quantum systems where electron-correlation effects govern their properties. Atomic anions are loosely bound systems, which with very few exceptions lack optically allowed transitions. This limits prospects for high-resolution spectroscopy, and related negative-ion detection methods. Here, we present a method to measure negative ion binding energies with an order of magnitude higher precision than what has been possible before. By laser-manipulation of quantum-state populations, we are able to strongly reduce the background from photodetachment of excited states using a cryogenic electrostatic ion-beam storage ring where keV ion beams can circulate for up to hours. The method is applicable to negative ions in general and here we report an electron affinity of 1.461 112 972(87) eV for 16O.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-33438-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33438-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-33438-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33438-y