Kondo quasiparticle dynamics observed by resonant inelastic x-ray scattering
M. C. Rahn (),
K. Kummer,
A. Hariki,
K.-H. Ahn,
J. Kuneš,
A. Amorese,
J. D. Denlinger,
D.-H. Lu,
M. Hashimoto,
E. Rienks,
M. Valvidares,
F. Haslbeck,
D. D. Byler,
K. J. McClellan,
E. D. Bauer,
J. X. Zhu,
C. H. Booth,
A. D. Christianson,
J. M. Lawrence,
F. Ronning and
M. Janoschek ()
Additional contact information
M. C. Rahn: Los Alamos National Laboratory
K. Kummer: European Synchrotron Radiation Facility
A. Hariki: Osaka Prefecture University
K.-H. Ahn: TU Wien
J. Kuneš: TU Wien
A. Amorese: University of Cologne
J. D. Denlinger: Lawrence Berkeley Laboratory
D.-H. Lu: SLAC National Accelerator Laboratory
M. Hashimoto: SLAC National Accelerator Laboratory
E. Rienks: Helmholtz Zentrum Berlin
M. Valvidares: ALBA Synchrotron Light Source
F. Haslbeck: Technische Universität München
D. D. Byler: Los Alamos National Laboratory
K. J. McClellan: Los Alamos National Laboratory
E. D. Bauer: Los Alamos National Laboratory
J. X. Zhu: Los Alamos National Laboratory
C. H. Booth: Lawrence Berkeley National Laboratory
A. D. Christianson: Oak Ridge National Laboratory
J. M. Lawrence: Los Alamos National Laboratory
F. Ronning: Los Alamos National Laboratory
M. Janoschek: Los Alamos National Laboratory
Nature Communications, 2022, vol. 13, issue 1, 1-8
Abstract:
Abstract Effective models focused on pertinent low-energy degrees of freedom have substantially contributed to our qualitative understanding of quantum materials. An iconic example, the Kondo model, was key to demonstrating that the rich phase diagrams of correlated metals originate from the interplay of localized and itinerant electrons. Modern electronic structure calculations suggest that to achieve quantitative material-specific models, accurate consideration of the crystal field and spin-orbit interactions is imperative. This poses the question of how local high-energy degrees of freedom become incorporated into a collective electronic state. Here, we use resonant inelastic x-ray scattering (RIXS) on CePd3 to clarify the fate of all relevant energy scales. We find that even spin-orbit excited states acquire pronounced momentum-dependence at low temperature—the telltale sign of hybridization with the underlying metallic state. Our results demonstrate how localized electronic degrees of freedom endow correlated metals with new properties, which is critical for a microscopic understanding of superconducting, electronic nematic, and topological states.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-33468-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33468-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-33468-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().