Near-infrared phosphorescent carbon dots for sonodynamic precision tumor therapy
Bijiang Geng,
Jinyan Hu,
Yuan Li,
Shini Feng,
Dengyu Pan (),
Lingyan Feng () and
Longxiang Shen ()
Additional contact information
Bijiang Geng: Shanghai University
Jinyan Hu: Shanghai University
Yuan Li: Shanghai University
Shini Feng: Shanghai University
Dengyu Pan: Shanghai University
Lingyan Feng: Shanghai University
Longxiang Shen: Shanghai Jiao Tong University affiliated Sixth People’s Hospital
Nature Communications, 2022, vol. 13, issue 1, 1-14
Abstract:
Abstract Theranostic sonosensitizers with combined sonodynamic and near infrared (NIR) imaging modes are required for imaging guided sonodynamic therapy (SDT). It is challenging, however, to realize a single material that is simultaneously endowed with both NIR emitting and sonodynamic activities. Herein, we report the design of a class of NIR-emitting sonosensitizers from a NIR phosphorescent carbon dot (CD) material with a narrow bandgap (1.62 eV) and long-lived excited triplet states (11.4 μs), two of which can enhance SDT as thermodynamically and dynamically favorable factors under low-intensity ultrasound irradiation, respectively. The NIR-phosphorescent CDs are identified as bipolar quantum dots containing both p- and n-type surface functionalization regions that can drive spatial separation of e−–h+ pairs and fast transfer to reaction sites. Importantly, the cancer-specific targeting and high-level intratumor enrichment of the theranostic CDs are achieved by cancer cell membrane encapsulation for precision SDT with complete eradication of solid tumors by single injection and single irradiation. These results will open up a promising approach to engineer phosphorescent materials with long-lived triplet excited states for sonodynamic precision tumor therapy.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-33474-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33474-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-33474-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().