The effect of enantioselective chiral covalent organic frameworks and cysteine sacrificial donors on photocatalytic hydrogen evolution
Weijun Weng and
Jia Guo ()
Additional contact information
Weijun Weng: Fudan University
Jia Guo: Fudan University
Nature Communications, 2022, vol. 13, issue 1, 1-11
Abstract:
Abstract Covalent organic frameworks (COFs) have constituted an emerging class of organic photocatalysts showing enormous potential for visible photocatalytic H2 evolution from water. However, suffering from sluggish reaction kinetics, COFs often cooperate with precious metal co-catalysts for essential proton-reducing capability. Here, we synthesize a chiral β-ketoenamine-linked COF coordinated with 10.51 wt% of atomically dispersed Cu(II) as an electron transfer mediator. The enantioselective combination of the chiral COF-Cu(II) skeleton with L-/D-cysteine sacrificial donors remarkably strengthens the hole extraction kinetics, and in turn, the photoinduced electrons accumulate and rapidly transfer via the coordinated Cu ions. Also, the parallelly stacking sequence of chiral COFs provides the energetically favorable arrangement for the H-adsorbed sites. Thus, without precious metal, the visible photocatalytic H2 evolution rate reaches as high as 14.72 mmol h−1 g−1 for the enantiomeric mixtures. This study opens up a strategy for optimizing the reaction kinetics and promises the exciting potential of chiral COFs for photocatalysis.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-33501-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33501-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-33501-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().