Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO3
Shubhankar Das,
A. Ross,
X. X. Ma,
S. Becker,
C. Schmitt,
F. Duijn,
E. F. Galindez-Ruales,
F. Fuhrmann,
M.-A. Syskaki,
U. Ebels,
V. Baltz,
A.-L. Barra,
H. Y. Chen,
G. Jakob,
S. X. Cao (),
J. Sinova,
O. Gomonay,
R. Lebrun and
M. Kläui ()
Additional contact information
Shubhankar Das: Johannes Gutenberg University Mainz
A. Ross: Thales, Université Paris-Saclay
X. X. Ma: Shanghai University
S. Becker: Johannes Gutenberg University Mainz
C. Schmitt: Johannes Gutenberg University Mainz
F. Duijn: CNRS, CEA, Grenoble INP, SPINTEC
E. F. Galindez-Ruales: Johannes Gutenberg University Mainz
F. Fuhrmann: Johannes Gutenberg University Mainz
M.-A. Syskaki: Johannes Gutenberg University Mainz
U. Ebels: CNRS, CEA, Grenoble INP, SPINTEC
V. Baltz: CNRS, CEA, Grenoble INP, SPINTEC
A.-L. Barra: CNRS-UGA-UPS-INSA-EMFL
H. Y. Chen: Shanghai University
G. Jakob: Johannes Gutenberg University Mainz
S. X. Cao: Shanghai University
J. Sinova: Johannes Gutenberg University Mainz
O. Gomonay: Johannes Gutenberg University Mainz
R. Lebrun: Thales, Université Paris-Saclay
M. Kläui: Johannes Gutenberg University Mainz
Nature Communications, 2022, vol. 13, issue 1, 1-8
Abstract:
Abstract In antiferromagnets, the efficient transport of spin-waves has until now only been observed in the insulating antiferromagnet hematite, where circularly (or a superposition of pairs of linearly) polarized spin-waves diffuse over long distances. Here, we report long-distance spin-transport in the antiferromagnetic orthoferrite YFeO3, where a different transport mechanism is enabled by the combined presence of the Dzyaloshinskii-Moriya interaction and externally applied fields. The magnon decay length is shown to exceed hundreds of nanometers, in line with resonance measurements that highlight the low magnetic damping. We observe a strong anisotropy in the magnon decay lengths that we can attribute to the role of the magnon group velocity in the transport of spin-waves in antiferromagnets. This unique mode of transport identified in YFeO3 opens up the possibility of a large and technologically relevant class of materials, i.e., canted antiferromagnets, for long-distance spin transport.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-33520-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33520-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-33520-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().