EconPapers    
Economics at your fingertips  
 

Multicolor ultralong phosphorescence from perovskite-like octahedral α-AlF3

Peisheng Cao, Haoyue Zheng and Peng Wu ()
Additional contact information
Peisheng Cao: Sichuan University
Haoyue Zheng: Sichuan University
Peng Wu: Sichuan University

Nature Communications, 2022, vol. 13, issue 1, 1-9

Abstract: Abstract Designing organic fluorescent and phosphorescent materials based on various core fluorophore has gained great attention, but it is unclear whether similar luminescent units exist for inorganic materials. Inspired by the BX6 octahedral structure of luminescent metal halide perovskites (MHP), here we propose that the BX6 octahedron may be a core structure for luminescent inorganic materials. In this regard, excitation-dependent color-tunable phosphorescence is discovered from α-AlF3 featuring AlF6 octahedron. Through further exploration of the BX6 unit by altering the dimension and changing the center metal (B) and ligand (X), luminescence from KAlF4, (NH4)3AlF6, AlCl3, Al(OH)3, Ga2O3, InCl3, and CdCl2 are also discovered. The phosphorescence of α-AlF3 can be ascribed to clusterization-triggered emission, i.e., weak through space interaction of the n electrons of F atoms bring close proximity in the AlF6 octahedra (inter/intra). These discoveries will deepen the understanding and contribute to further development of BX6 octahedron-based luminescent materials.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-33540-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33540-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-33540-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33540-1