Direct observations of energy transfer from resonant electrons to whistler-mode waves in magnetosheath of Earth
N. Kitamura (),
T. Amano,
Y. Omura,
S. A. Boardsen,
D. J. Gershman,
Y. Miyoshi,
M. Kitahara,
Y. Katoh,
H. Kojima,
S. Nakamura,
M. Shoji,
Y. Saito,
S. Yokota,
B. L. Giles,
W. R. Paterson,
C. J. Pollock,
A. C. Barrie,
D. G. Skeberdis,
S. Kreisler,
O. Le Contel,
C. T. Russell,
R. J. Strangeway,
P.-A. Lindqvist,
R. E. Ergun,
R. B. Torbert and
J. L. Burch
Additional contact information
N. Kitamura: Nagoya University
T. Amano: the University of Tokyo
Y. Omura: Kyoto University
S. A. Boardsen: NASA Goddard Space Flight Center
D. J. Gershman: NASA Goddard Space Flight Center
Y. Miyoshi: Nagoya University
M. Kitahara: Tohoku University
Y. Katoh: Tohoku University
H. Kojima: Kyoto University
S. Nakamura: Nagoya University
M. Shoji: Nagoya University
Y. Saito: Japan Aerospace Exploration Agency
S. Yokota: Osaka University
B. L. Giles: NASA Goddard Space Flight Center
W. R. Paterson: NASA Goddard Space Flight Center
C. J. Pollock: Denali Scientific
A. C. Barrie: NASA Goddard Space Flight Center
D. G. Skeberdis: NASA Goddard Space Flight Center
S. Kreisler: NASA Goddard Space Flight Center
O. Le Contel: CNRS/Sorbonne Université/Université Paris-Saclay/Observatoire de Paris/Ecole Polytechnique Institut Polytechnique de Paris
C. T. Russell: University of California
R. J. Strangeway: University of California
P.-A. Lindqvist: Royal Institute of Technology
R. E. Ergun: University of Colorado
R. B. Torbert: University of New Hampshire
J. L. Burch: Southwest Research Institute
Nature Communications, 2022, vol. 13, issue 1, 1-12
Abstract:
Abstract Electromagnetic whistler-mode waves in space plasmas play critical roles in collisionless energy transfer between the electrons and the electromagnetic field. Although resonant interactions have been considered as the likely generation process of the waves, observational identification has been extremely difficult due to the short time scale of resonant electron dynamics. Here we show strong nongyrotropy, which rotate with the wave, of cyclotron resonant electrons as direct evidence for the locally ongoing secular energy transfer from the resonant electrons to the whistler-mode waves using ultra-high temporal resolution data obtained by NASA’s Magnetospheric Multiscale (MMS) mission in the magnetosheath. The nongyrotropic electrons carry a resonant current, which is the energy source of the wave as predicted by the nonlinear wave growth theory. This result proves the nonlinear wave growth theory, and furthermore demonstrates that the degree of nongyrotropy, which cannot be predicted even by that nonlinear theory, can be studied by observations.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-33604-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33604-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-33604-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().