EconPapers    
Economics at your fingertips  
 

Direct visualization of Rashba-split bands and spin/orbital-charge interconversion at KTaO3 interfaces

Sara Varotto, Annika Johansson (), Börge Göbel, Luis M. Vicente-Arche, Srijani Mallik, Julien Bréhin, Raphaël Salazar, François Bertran, Patrick Le Fèvre, Nicolas Bergeal, Julien Rault, Ingrid Mertig and Manuel Bibes ()
Additional contact information
Sara Varotto: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay
Annika Johansson: Max Planck Institute of Microstructure Physics
Börge Göbel: Institute of Physics, Martin-Luther-Universität Halle-Wittenberg
Luis M. Vicente-Arche: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay
Srijani Mallik: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay
Julien Bréhin: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay
Raphaël Salazar: Synchrotron SOLEIL, L’Orme des Merisiers
François Bertran: Synchrotron SOLEIL, L’Orme des Merisiers
Patrick Le Fèvre: Synchrotron SOLEIL, L’Orme des Merisiers
Nicolas Bergeal: Laboratoire de Physique et d’Etude des Matériaux, ESPCI Paris, Université PSL, CNRS
Julien Rault: Synchrotron SOLEIL, L’Orme des Merisiers
Ingrid Mertig: Institute of Physics, Martin-Luther-Universität Halle-Wittenberg
Manuel Bibes: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay

Nature Communications, 2022, vol. 13, issue 1, 1-9

Abstract: Abstract Rashba interfaces have emerged as promising platforms for spin-charge interconversion through the direct and inverse Edelstein effects. Notably, oxide-based two-dimensional electron gases display a large and gate-tunable conversion efficiency, as determined by transport measurements. However, a direct visualization of the Rashba-split bands in oxide two-dimensional electron gases is lacking, which hampers an advanced understanding of their rich spin-orbit physics. Here, we investigate KTaO3 two-dimensional electron gases and evidence their Rashba-split bands using angle resolved photoemission spectroscopy. Fitting the bands with a tight-binding Hamiltonian, we extract the effective Rashba coefficient and bring insight into the complex multiorbital nature of the band structure. Our calculations reveal unconventional spin and orbital textures, showing compensation effects from quasi-degenerate band pairs which strongly depend on in-plane anisotropy. We compute the band-resolved spin and orbital Edelstein effects, and predict interconversion efficiencies exceeding those of other oxide two-dimensional electron gases. Finally, we suggest design rules for Rashba systems to optimize spin-charge interconversion performance.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-33621-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33621-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-33621-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33621-1