EconPapers    
Economics at your fingertips  
 

Sub-wavelength patterned pulse laser lithography for efficient fabrication of large-area metasurfaces

Lingyu Huang, Kang Xu, Dandan Yuan, Jin Hu, Xinwei Wang and Shaolin Xu ()
Additional contact information
Lingyu Huang: Southern University of Science and Technology
Kang Xu: Southern University of Science and Technology
Dandan Yuan: Southern University of Science and Technology
Jin Hu: Southern University of Science and Technology
Xinwei Wang: Iowa State University
Shaolin Xu: Southern University of Science and Technology

Nature Communications, 2022, vol. 13, issue 1, 1-10

Abstract: Abstract Rigorously designed sub-micrometer structure arrays are widely used in metasurfaces for light modulation. One of the glaring restrictions is the unavailability of easily accessible fabrication methods to efficiently produce large-area and freely designed structure arrays with nanoscale resolution. We develop a patterned pulse laser lithography (PPLL) approach to create structure arrays with sub-wavelength feature resolution and periods from less than 1 μm to over 15 μm on large-area thin films with substrates under ambient conditions. Separated ultrafast laser pulses with patterned wavefront by quasi-binary phase masks rapidly create periodic ablated/modified structures by high-speed scanning. The gradient intensity boundary and circular polarization of the wavefront weaken diffraction and polarization-dependent asymmetricity effects during light propagation for high uniformity. Structural units of metasurfaces are obtained on metal and inorganic photoresist films, such as antennas, catenaries, and nanogratings. We demonstrate a large-area metasurface (10 × 10 mm2) revealing excellent infrared absorption (3–7 μm), which comprises 250,000 concentric rings and takes only 5 minutes to produce.

Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-33644-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33644-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-33644-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33644-8