EconPapers    
Economics at your fingertips  
 

Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles

Johannes Morfeldt () and Daniel J. A. Johansson
Additional contact information
Johannes Morfeldt: Chalmers University of Technology
Daniel J. A. Johansson: Chalmers University of Technology

Nature Communications, 2022, vol. 13, issue 1, 1-11

Abstract: Abstract Shared cars will likely have larger annual vehicle driving distances than individually owned cars. This may accelerate passenger car retirement. Here we develop a semi-empirical lifetime-driving intensity model using statistics on Swedish vehicle retirement. This semi-empirical model is integrated with a carbon footprint model, which considers future decarbonization pathways. In this work, we show that the carbon footprint depends on the cumulative driving distance, which depends on both driving intensity and calendar aging. Higher driving intensities generally result in lower carbon footprints due to increased cumulative driving distance over the vehicle’s lifetime. Shared cars could decrease the carbon footprint by about 41% in 2050, if one shared vehicle replaces ten individually owned vehicles. However, potential empty travel by autonomous shared vehicles—the additional distance traveled to pick up passengers—may cause carbon footprints to increase. Hence, vehicle durability and empty travel should be considered when designing low-carbon car sharing systems.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-33666-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33666-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-33666-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33666-2