Rapid and efficient hydrogen clathrate hydrate formation in confined nanospace
Judit Farrando-Perez,
Rafael Balderas-Xicohtencatl,
Yongqiang Cheng,
Luke Daemen,
Carlos Cuadrado-Collados,
Manuel Martinez-Escandell,
Anibal J. Ramirez-Cuesta () and
Joaquin Silvestre-Albero ()
Additional contact information
Judit Farrando-Perez: Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante
Rafael Balderas-Xicohtencatl: Spallation Neutron Source, Oak Ridge National Laboratory
Yongqiang Cheng: Spallation Neutron Source, Oak Ridge National Laboratory
Luke Daemen: Spallation Neutron Source, Oak Ridge National Laboratory
Carlos Cuadrado-Collados: Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante
Manuel Martinez-Escandell: Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante
Anibal J. Ramirez-Cuesta: Spallation Neutron Source, Oak Ridge National Laboratory
Joaquin Silvestre-Albero: Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante
Nature Communications, 2022, vol. 13, issue 1, 1-6
Abstract:
Abstract Clathrate hydrates are crystalline solids characterized by their ability to accommodate large quantities of guest molecules. Although CH4 and CO2 are the traditional guests found in natural systems, incorporating smaller molecules (e.g., H2) is challenging due to the need to apply higher pressures to stabilize the hydrogen-bonded network. Another critical limitation of hydrates is the slow nucleation and growth kinetics. Here, we show that specially designed activated carbon materials can surpass these obstacles by acting as nanoreactors promoting the nucleation and growth of H2 hydrates. The confinement effects in the inner cavities promote the massive growth of hydrogen hydrates at moderate temperatures, using pure water, with extremely fast kinetics and much lower pressures than the bulk system.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-33674-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33674-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-33674-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().