EconPapers    
Economics at your fingertips  
 

Supramolecular photodynamic agents for simultaneous oxidation of NADH and generation of superoxide radical

Kun-Xu Teng, Li-Ya Niu, Nan Xie and Qing-Zheng Yang ()
Additional contact information
Kun-Xu Teng: Beijing Normal University
Li-Ya Niu: Beijing Normal University
Nan Xie: Capital Medical University
Qing-Zheng Yang: Beijing Normal University

Nature Communications, 2022, vol. 13, issue 1, 1-9

Abstract: Abstract Given that Type-I photosensitizers (PSs) have hypoxia tolerance, developing general approaches to prepare Type-I PSs is of great importance, but remains a challenge. Here, we report a supramolecular strategy for the preparation of Type-I photodynamic agents, which simultaneously generate strong oxidizing cationic radicals and superoxide radicals, by introducing electron acceptors to the existing Type-II PSs. As a proof-of-concept, three electron acceptors were designed and co-assembled with a classical PS to produce quadruple hydrogen-bonded supramolecular photodynamic agents. The photo-induced electron transfer from the PS to the adjacent electron acceptor occurs efficiently, leading to the generation of a strong oxidizing PS+• and an anionic radical of the acceptor, which further transfers an electron to oxygen to form O2−•. In addition, these photodynamic agents induce direct photocatalytic oxidation of NADH with a turnover frequency as high as 53.7 min−1, which offers an oxygen-independent mechanism to damage tumors.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-33924-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33924-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-33924-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33924-3