Synthetic Pseudo-Spin-Hall effect in acoustic metamaterials
Matthew Weiner,
Xiang Ni,
Andrea Alù and
Alexander B. Khanikaev ()
Additional contact information
Matthew Weiner: City College of the City University of New York
Xiang Ni: City College of the City University of New York
Andrea Alù: City College of the City University of New York
Alexander B. Khanikaev: City College of the City University of New York
Nature Communications, 2022, vol. 13, issue 1, 1-7
Abstract:
Abstract While vector fields naturally offer additional degrees of freedom for emulating spin, acoustic pressure field is scalar in nature, and it requires engineering of synthetic degrees of freedom by material design. Here we experimentally demonstrate the control of sound waves by using two types of engineered acoustic systems, where synthetic pseudo-spin emerges either as a consequence of the evanescent nature of the field or due to lattice symmetry. First, we show that evanescent sound waves in perforated films possess transverse angular momentum locked to their propagation direction which enables their directional excitation. Second, we demonstrate that lattice symmetries of an acoustic kagome lattice also enable a synthetic transverse pseudo-spin locked to the linear momentum, enabling control of the propagation of modes both in the bulk and along the edges. Our results open a new degree of control of radiation and propagation of acoustic waves thus offering new design approaches for acoustic devices.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-34072-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34072-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-34072-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().