Dense dislocations enable high-performance PbSe thermoelectric at low-medium temperatures
Liqing Xu,
Yu Xiao (),
Sining Wang,
Bo Cui (),
Di Wu,
Xiangdong Ding and
Li-Dong Zhao ()
Additional contact information
Liqing Xu: Xi’an Jiaotong University
Yu Xiao: Xi’an Jiaotong University
Sining Wang: Beihang University
Bo Cui: China Academy of Engineering Physics
Di Wu: Shaanxi Normal University
Xiangdong Ding: Xi’an Jiaotong University
Li-Dong Zhao: Beihang University
Nature Communications, 2022, vol. 13, issue 1, 1-10
Abstract:
Abstract PbSe-based thermoelectric materials exhibit promising ZT values at medium temperature, but its near-room-temperature thermoelectric properties are overlooked, thus restricting its average ZT (ZTave) value at low-medium temperatures. Here, a high ZTave of 0.90 at low temperature (300–573 K) is reported in n-type PbSe-based thermoelectric material (Pb1.02Se0.72Te0.20S0.08−0.3%Cu), resulting in a large ZTave of 0.96 at low-medium temperatures (300–773 K). This high thermoelectric performance stems from its ultralow lattice thermal conductivity caused by dense dislocations through heavy Te/S alloying and Cu interstitial doping. The dislocation density evaluated by modified Williamson-Hall method reaches up to 5.4 × 1016 m−2 in Pb1.02Se0.72Te0.20S0.08−0.3%Cu. Moreover, the microstructure observation further uncloses two kinds of dislocations, namely screw and edge dislocations, with several to hundreds of nanometers scale in length. These dislocations in lattice can strongly intensify phonon scattering to minimize the lattice thermal conductivity and simultaneously maintain high carrier transport. As a result, with the reduced lattice thermal conductivity and optimized power factor in Pb1.02Se0.72Te0.20S0.08−0.3%Cu, its near-room-temperature thermoelectric performance is largely enhanced and exceeds previous PbSe-based thermoelectric materials.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-34227-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34227-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-34227-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().