Barium content of Archaean continental crust reveals the onset of subduction was not global
Guangyu Huang (),
Ross N. Mitchell (),
Richard M. Palin,
Christopher J. Spencer and
Jinghui Guo
Additional contact information
Guangyu Huang: Chinese Academy of Sciences
Ross N. Mitchell: Chinese Academy of Sciences
Richard M. Palin: University of Oxford
Christopher J. Spencer: Queen’s University
Jinghui Guo: Chinese Academy of Sciences
Nature Communications, 2022, vol. 13, issue 1, 1-8
Abstract:
Abstract Earth’s earliest continental crust is dominated by tonalite–trondhjemite–granodiorite (TTG) suites, making these rocks key to unlocking the global geodynamic regime operating during the Archaean (4.0–2.5 billion years ago [Ga]). The tectonic setting of TTG magmatism is controversial, with hypotheses arguing both for and against subduction. Here we conduct petrological modeling over a range of pressure–temperature conditions relevant to the Archaean geothermal gradient. Using an average enriched Archaean basaltic source composition, we predict Ba concentrations in TTG suites, which is difficult to increase after magma generated in the source. The results indicate only low geothermal gradients corresponding to hot subduction zones produce Ba-rich TTG, thus Ba represents a proxy for the onset of subduction. We then identify statistically significant increases in the Ba contents of TTG suites worldwide as recording the diachronous onset of subduction from regional at 4 Ga to globally complete sometime after 2.7 Ga.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-34343-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34343-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-34343-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().