EconPapers    
Economics at your fingertips  
 

Capture at the ER-mitochondrial contacts licenses IP3 receptors to stimulate local Ca2+ transfer and oxidative metabolism

Máté Katona, Ádám Bartók, Zuzana Nichtova, György Csordás, Elena Berezhnaya, David Weaver, Arijita Ghosh, Péter Várnai, David I. Yule and György Hajnóczky ()
Additional contact information
Máté Katona: Thomas Jefferson University
Ádám Bartók: Thomas Jefferson University
Zuzana Nichtova: Thomas Jefferson University
György Csordás: Thomas Jefferson University
Elena Berezhnaya: Thomas Jefferson University
David Weaver: Thomas Jefferson University
Arijita Ghosh: Thomas Jefferson University
Péter Várnai: Semmelweis University
David I. Yule: University of Rochester
György Hajnóczky: Thomas Jefferson University

Nature Communications, 2022, vol. 13, issue 1, 1-11

Abstract: Abstract Endoplasmic reticulum-mitochondria contacts (ERMCs) are restructured in response to changes in cell state. While this restructuring has been implicated as a cause or consequence of pathology in numerous systems, the underlying molecular dynamics are poorly understood. Here, we show means to visualize the capture of motile IP3 receptors (IP3Rs) at ERMCs and document the immediate consequences for calcium signaling and metabolism. IP3Rs are of particular interest because their presence provides a scaffold for ERMCs that mediate local calcium signaling, and their function outside of ERMCs depends on their motility. Unexpectedly, in a cell model with little ERMC Ca2+ coupling, IP3Rs captured at mitochondria promptly mediate Ca2+ transfer, stimulating mitochondrial oxidative metabolism. The Ca2+ transfer does not require linkage with a pore-forming protein in the outer mitochondrial membrane. Thus, motile IP3Rs can traffic in and out of ERMCs, and, when ‘parked’, mediate calcium signal propagation to the mitochondria, creating a dynamic arrangement that supports local communication.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-34365-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34365-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-34365-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-05-10
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34365-8