An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell
Zhi Chang,
Huijun Yang,
Anqiang Pan (),
Ping He and
Haoshen Zhou ()
Additional contact information
Zhi Chang: Central South University
Huijun Yang: National Institute of Advanced Industrial Science and Technology (AIST)
Anqiang Pan: Central South University
Ping He: Nanjing University
Haoshen Zhou: National Institute of Advanced Industrial Science and Technology (AIST)
Nature Communications, 2022, vol. 13, issue 1, 1-12
Abstract:
Abstract The use of separators that are thinner than conventional separators (> 20 µm) would improve the energy densities and specific energies of lithium batteries. However, thinner separators increase the risk of internal short circuits from lithium dendrites formed in both lithium-ion and lithium metal batteries. Herein, we grow metal-organic frameworks (MOFs) inside the channels of a polypropylene separator (8 µm thick) using current-driven electrosynthesis, which aggregates the electrolyte in the MOF channels. Compared to unmodified polypropylene separators, the MOF-modified separator (9 µm thick) vastly improves the cycling stability and dendrite resistance of cells assembled with Li metal anodes and carbonate-based electrolytes. As a demonstration, a 354 Wh kg−1 pouch cell with a lithium metal anode and LiNi0.8Co0.15Al0.05O2 (NCA)-based cathode (N/P = 3.96) is assembled with 9 µm layer of the MOF-modified separator and retains 80% of its capacity after 200 cycles (charged at 75 mA g−1, discharged at 100 mA g−1) at 25 °C.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-34584-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34584-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-34584-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().