EconPapers    
Economics at your fingertips  
 

Unimon qubit

Eric Hyyppä (), Suman Kundu, Chun Fai Chan, András Gunyhó, Juho Hotari, David Janzso, Kristinn Juliusson, Olavi Kiuru, Janne Kotilahti, Alessandro Landra, Wei Liu, Fabian Marxer, Akseli Mäkinen, Jean-Luc Orgiazzi, Mario Palma, Mykhailo Savytskyi, Francesca Tosto, Jani Tuorila, Vasilii Vadimov, Tianyi Li, Caspar Ockeloen-Korppi, Johannes Heinsoo, Kuan Yen Tan, Juha Hassel and Mikko Möttönen ()
Additional contact information
Eric Hyyppä: IQM
Suman Kundu: QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University
Chun Fai Chan: IQM
András Gunyhó: QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University
Juho Hotari: IQM
David Janzso: IQM
Kristinn Juliusson: IQM
Olavi Kiuru: QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University
Janne Kotilahti: IQM
Alessandro Landra: IQM
Wei Liu: IQM
Fabian Marxer: IQM
Akseli Mäkinen: IQM
Jean-Luc Orgiazzi: IQM
Mario Palma: IQM
Mykhailo Savytskyi: IQM
Francesca Tosto: IQM
Jani Tuorila: IQM
Vasilii Vadimov: QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University
Tianyi Li: IQM
Caspar Ockeloen-Korppi: IQM
Johannes Heinsoo: IQM
Kuan Yen Tan: IQM
Juha Hassel: IQM
Mikko Möttönen: IQM

Nature Communications, 2022, vol. 13, issue 1, 1-14

Abstract: Abstract Superconducting qubits seem promising for useful quantum computers, but the currently wide-spread qubit designs and techniques do not yet provide high enough performance. Here, we introduce a superconducting-qubit type, the unimon, which combines the desired properties of increased anharmonicity, full insensitivity to dc charge noise, reduced sensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator. In agreement with our quantum models, we measure the qubit frequency, ω01/(2π), and increased anharmonicity α/(2π) at the optimal operation point, yielding, for example, 99.9% and 99.8% fidelity for 13 ns single-qubit gates on two qubits with (ω01, α) = (4.49 GHz, 434 MHz) × 2π and (3.55 GHz, 744 MHz) × 2π, respectively. The energy relaxation seems to be dominated by dielectric losses. Thus, improvements of the design, materials, and gate time may promote the unimon to break the 99.99% fidelity target for efficient quantum error correction and possible useful quantum advantage with noisy systems.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-34614-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34614-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-34614-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34614-w