EconPapers    
Economics at your fingertips  
 

Priming self-assembly pathways by stacking block copolymers

Sebastian T. Russell, Suwon Bae, Ashwanth Subramanian, Nikhil Tiwale, Gregory Doerk, Chang-Yong Nam, Masafumi Fukuto and Kevin G. Yager ()
Additional contact information
Sebastian T. Russell: Brookhaven National Laboratory
Suwon Bae: Brookhaven National Laboratory
Ashwanth Subramanian: Stony Brook University
Nikhil Tiwale: Brookhaven National Laboratory
Gregory Doerk: Brookhaven National Laboratory
Chang-Yong Nam: Brookhaven National Laboratory
Masafumi Fukuto: Brookhaven National Laboratory
Kevin G. Yager: Brookhaven National Laboratory

Nature Communications, 2022, vol. 13, issue 1, 1-11

Abstract: Abstract Block copolymers spontaneously self-assemble into well-defined nanoscale morphologies. Yet equilibrium assembly gives rise to a limited set of structures. Non-equilibrium strategies can, in principle, expand diversity by exploiting self-assembly’s responsive nature. In this vein, we developed a pathway priming strategy combining control of thin film initial configurations and ordering history. We sequentially coat distinct materials to form prescribed initial states, and use thermal annealing to evolve these manifestly non-equilibrium states through the assembly landscape, traversing normally inaccessible transient structures. We explore the enormous associated hyperspace, spanning processing (annealing temperature and time), material (composition and molecular weight), and layering (thickness and order) dimensions. We demonstrate a library of exotic non-native morphologies, including vertically-oriented perforated lamellae, aqueduct structures (vertical lamellar walls with substrate-pinned perforations), parapets (crenellated lamellae), and networks of crisscrossing lamellae. This enhanced structural control can be used to modify functional properties, including accessing regimes that surpass their equilibrium analogs.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-34729-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34729-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-34729-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34729-0