Precise tuning of interlayer electronic coupling in layered conductive metal-organic frameworks
Yang Lu,
Yingying Zhang,
Chi-Yuan Yang,
Sergio Revuelta,
Haoyuan Qi,
Chuanhui Huang,
Wenlong Jin,
Zichao Li,
Victor Vega-Mayoral,
Yannan Liu,
Xing Huang,
Darius Pohl,
Miroslav Položij,
Shengqiang Zhou,
Enrique Cánovas,
Thomas Heine,
Simone Fabiano,
Xinliang Feng () and
Renhao Dong ()
Additional contact information
Yang Lu: Technische Universität Dresden
Yingying Zhang: Technische Universität Dresden
Chi-Yuan Yang: Linköping University
Sergio Revuelta: Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia)
Haoyuan Qi: Technische Universität Dresden
Chuanhui Huang: Technische Universität Dresden
Wenlong Jin: Linköping University
Zichao Li: Helmholtz-Zentrum Dresden-Rossendorf
Victor Vega-Mayoral: Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia)
Yannan Liu: Technische Universität Dresden
Xing Huang: Technische Universität Dresden
Darius Pohl: Technische Universität Dresden
Miroslav Položij: Technische Universität Dresden
Shengqiang Zhou: Helmholtz-Zentrum Dresden-Rossendorf
Enrique Cánovas: Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia)
Thomas Heine: Technische Universität Dresden
Simone Fabiano: Linköping University
Xinliang Feng: Technische Universität Dresden
Renhao Dong: Technische Universität Dresden
Nature Communications, 2022, vol. 13, issue 1, 1-7
Abstract:
Abstract Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have attracted increasing interests for (opto)-electronics and spintronics. They generally consist of van der Waals stacked layers and exhibit layer-depended electronic properties. While considerable efforts have been made to regulate the charge transport within a layer, precise control of electronic coupling between layers has not yet been achieved. Herein, we report a strategy to precisely tune interlayer charge transport in 2D c-MOFs via side-chain induced control of the layer spacing. We design hexaiminotriindole ligands allowing programmed functionalization with tailored alkyl chains (HATI_CX, X = 1,3,4; X refers to the carbon numbers of the alkyl chains) for the synthesis of semiconducting Ni3(HATI_CX)2. The layer spacing of these MOFs can be precisely varied from 3.40 to 3.70 Å, leading to widened band gap, suppressed carrier mobilities, and significant improvement of the Seebeck coefficient. With this demonstration, we further achieve a record-high thermoelectric power factor of 68 ± 3 nW m−1 K−2 in Ni3(HATI_C3)2, superior to the reported holes-dominated MOFs.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-34820-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34820-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-34820-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().