EconPapers    
Economics at your fingertips  
 

A global survey of diurnal offshore propagation of rainfall

Junying Fang and Yu Du ()
Additional contact information
Junying Fang: Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)
Yu Du: Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)

Nature Communications, 2022, vol. 13, issue 1, 1-10

Abstract: Abstract Diurnal rainfall offshore propagation (OP) shapes the timing and intensity of coastal rainfall and thus impacts both nature and society. Previous OP studies have rarely compared various coasts, and a consensus regarding physical mechanisms has not been reached on a global scale. Here, we provide the global climatology of observed OP, which propagates across ~78% of all coasts and accounts for ~59% of the coastal precipitation. Generally, OP is facilitated by low latitudes, high moisture conditions and offshore background winds. OP at low latitudes in a high-moisture environment is mainly caused by inertia–gravity waves due to the land–sea thermal contrast, whereas OP at higher latitudes is significantly influenced by background winds under trapped land–sea breeze circulation conditions. Slower near-shore OP might be modulated by density currents. Our results provide a guide for global OP hotspots and suggest relative contributions of mechanisms from a statistical perspective.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-34842-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34842-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-34842-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34842-0